

The Role of HRMS in Searching for Xenobiotic Compounds in Environmental Media

Mark Strynar

US EPA Office of Research and Development (ORD)
Center for Environmental Measurement and Modeling (CEMM)

August 3rd, 2020 NEMC The Environment in 2020: Past, Present and Future

U.S. Environmental Protection Agency

Compound identification basis

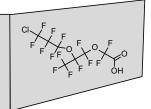
Foundation: First step

Critical for home

Necessary

Everything else is built upon it

Compound identification basis


Foundation: First step

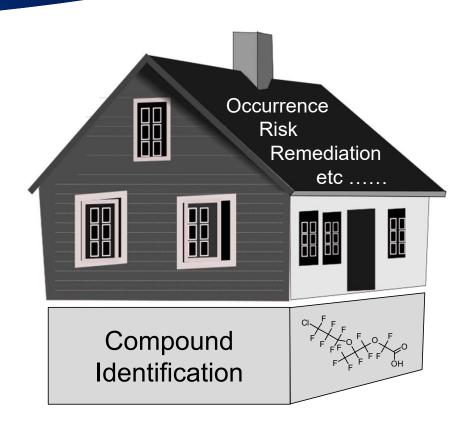
Critical for home

Necessary

Everything else is built upon it

Compound Identification

Compound identification basis



Foundation: First step

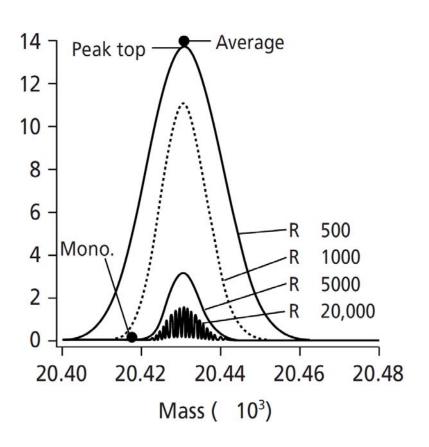
Critical for home

Necessary

Everything else is built upon it

Mass Spectrometry Resolution?

HRMS



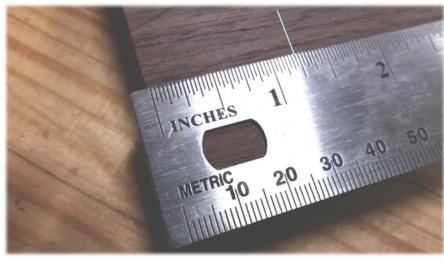
This Photo by Unknown Author is licensed under CC BY-NC

Resolution is "the ability to "image" a detected ion in a mass spectrometer and differentiate it from any other". Balogh 2004 Debating Resolution and Mass

Accuracy LCGC NORTH AMERICA VOLUME 22 NUMBER 2

Mass Spectrometry Resolution?

Type	Resolving Power (FWHM)
FT-ICR-MS	1,000,000
FT-Orbitrap	100,000
High-Res-TOF	60,000
TOF	10,000
Quadrupole / IonTrap in	10,000
UltraZoom mode	
Quadrupole / Iontrap	1,000

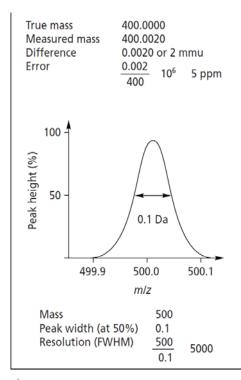

https://fiehnlab.ucdavis.edu/projects/seven-golden-rules/mass-resolution

Mass Accuracy

PFOA: MW 412.9 +/- 0.1 to 0.5 Da

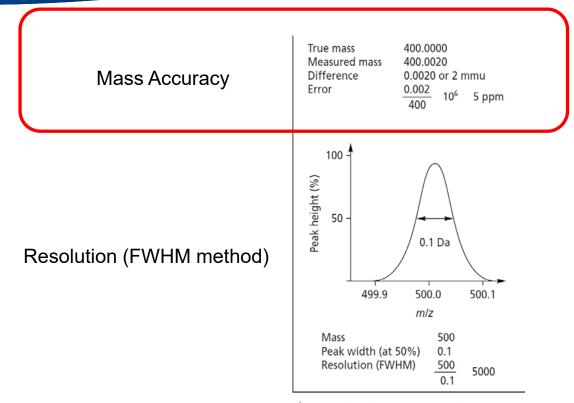
MW 412.9964 +/- 0.0004 Da (1ppm)

photos by Mark Strynar

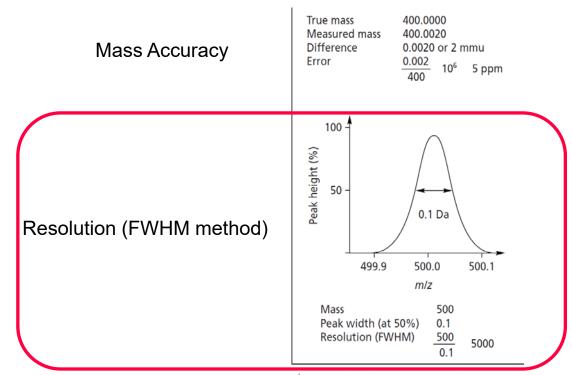

Mass accuracy is the ability to measure or calibrate the instrument response against a known entity. Usually expressed in parts per million (ppm), the measurement indicates the deviation of the instrument response from a known.

Balogh 2004 Debating Resolution and Mass Accuracy LCGC NORTH AMERICA VOLUME 22 NUMBER 2

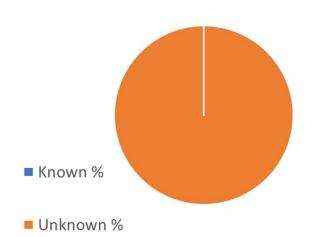
HRMS Measurable Parameters


Mass Accuracy

Resolution (FWHM method)


Figure 1: (Top) Mass accuracy determination and (bottom) the FWHM method for determining resolution for a mass spectrometer measured at a given ion.

HRMS Measurable Parameters


Figure 1: (Top) Mass accuracy determination and (bottom) the FWHM method for determining resolution for a mass spectrometer measured at a given ion.

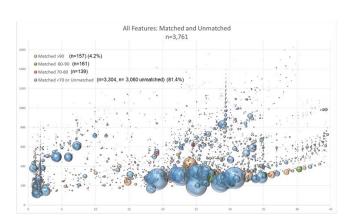
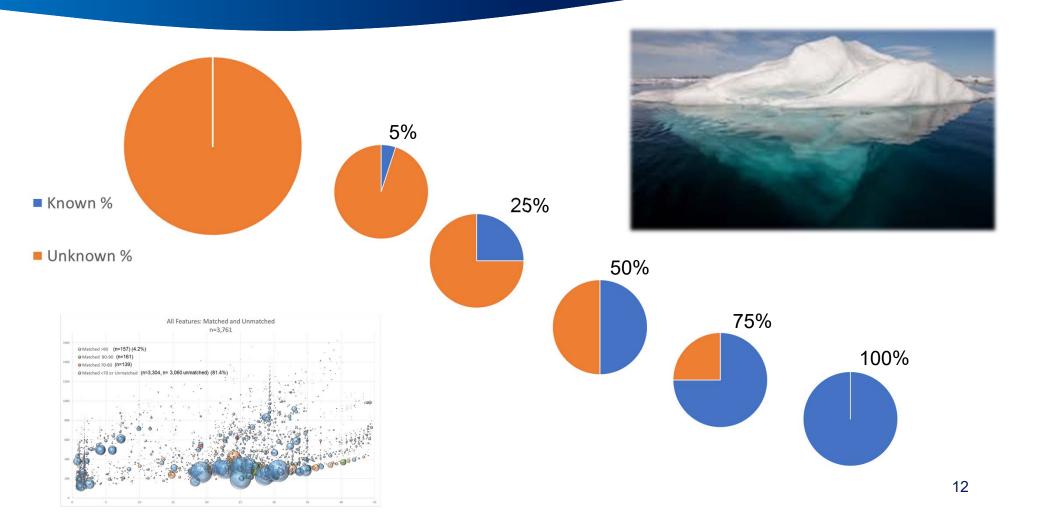
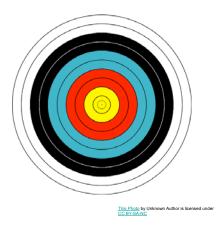

HRMS Measurable Parameters

Figure 1: (Top) Mass accuracy determination and (bottom) the FWHM method for determining resolution for a mass spectrometer measured at a given ion.

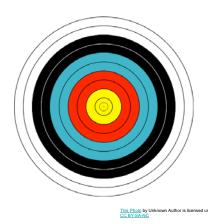

What is our sample analysis comfort level?




What is our sample analysis comfort level?

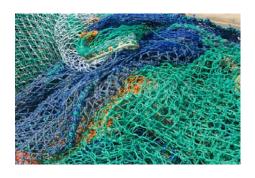
Targeted Analysis - analyzing for a suite of analytes with a validated method e.g. How much Fipronil is in my water?

13



This Photo by Unknown Author is licensed under CC BY-NC-ND

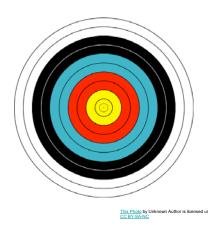
Non-Targeted Analysis (Untargeted Analysis) - no preconceived notion of chemical present


e.g. What chemicals are in my water?

Targeted Analysis - analyzing for a suite of analytes with a validated method e.g. How much Fipronil is in my water?

LRMS

HRMS


This Photo by Unknown Author is licensed under CC BY-NC-ND

Non-Targeted Analysis (Untargeted Analysis) - no preconceived notion of chemical present

e.g. What chemicals are in my water?

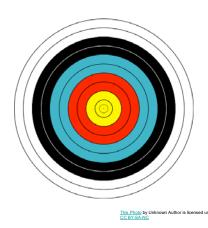
14

Targeted Analysis - analyzing for a suite of analytes with a validated method e.g. How much Fipronil is in my water?

LRMS

HRMS

This Photo by Unknown Author is licensed under CC BY-NC-ND


Non-Targeted Analysis (Untargeted Analysis) - no preconceived notion of chemical present

e.g. What chemicals are in my water?

Suspect Screening – screening against a database of chemicals

Targeted Analysis - analyzing for a suite of analytes with a validated method e.g. How much Fipronil is in my water?

LRMS

HRMS

This Photo by Unknown Author is licensed under CC BY-NC-NE

Non-Targeted Analysis (Untargeted Analysis) - no preconceived notion of chemical present

e.g. What chemicals are in my water?

 \searrow

Suspect Screening – screening against a database of chemicals

Non-Targeted Analysis – novel compound identification

Some key questions we are all asking:

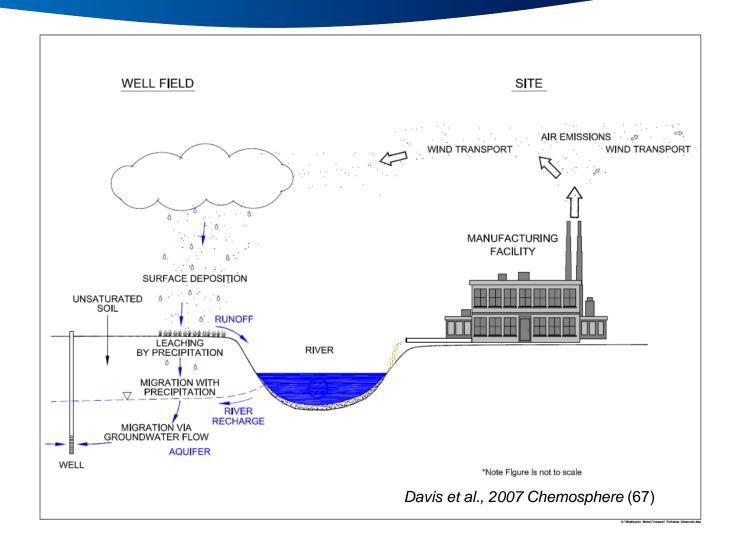
How good is good enough?

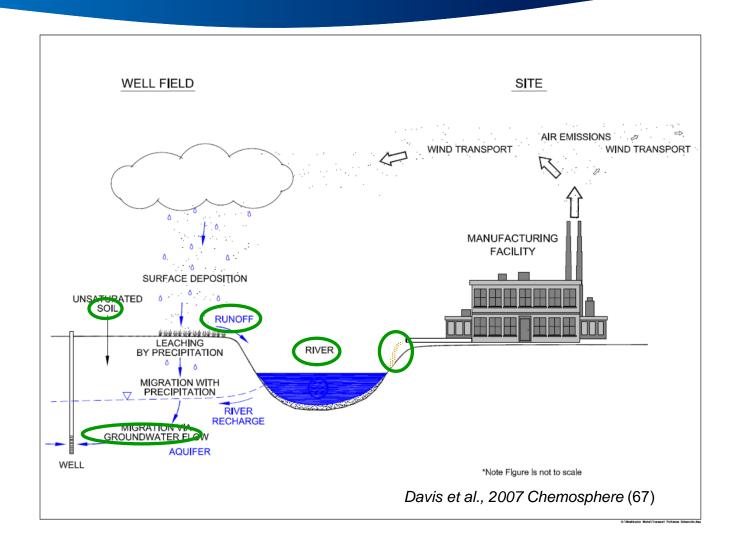
Can we give quantitative values of these chemicals?

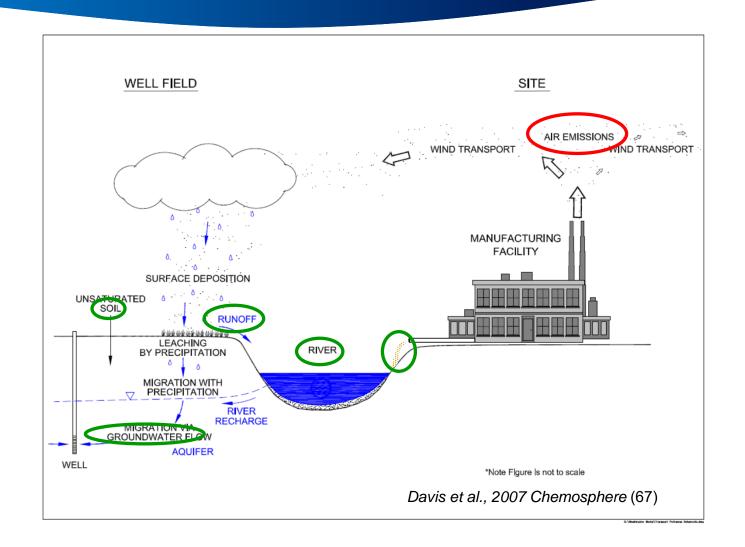
How will this data be used?

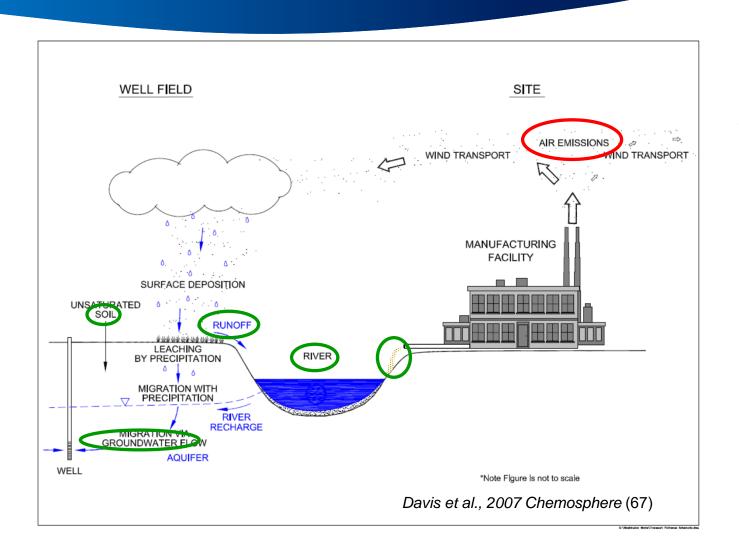
What are the important analytes?

What is my confidence in identification?

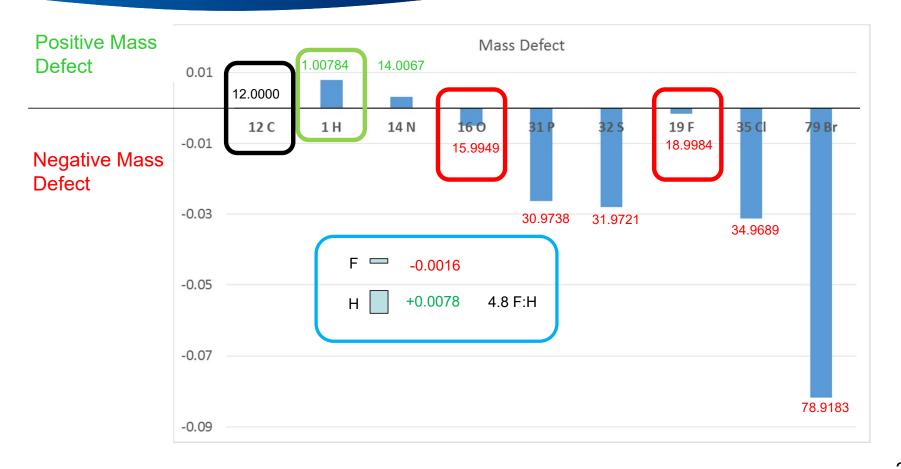

What if I miss something?


HRMS is A tool in the environmental/analytical chemists tool belt:


- a powerful tool
- a very useful tool
- not the only tool

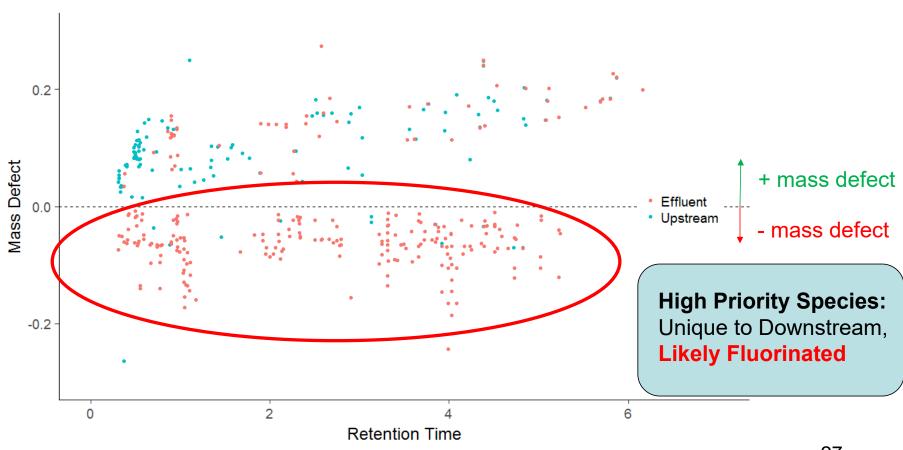


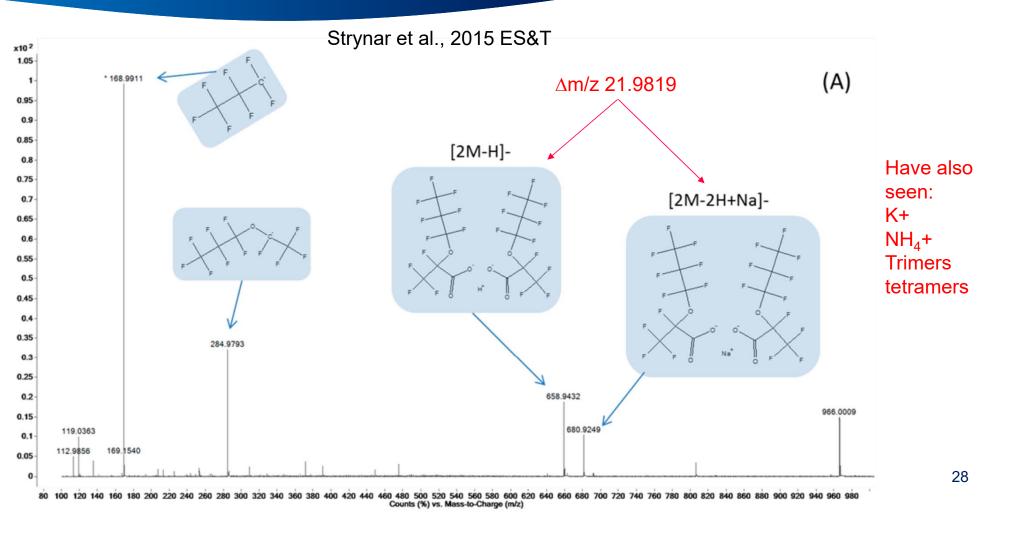
This Photo by Unknown Author is licensed under CC BY-NC-ND

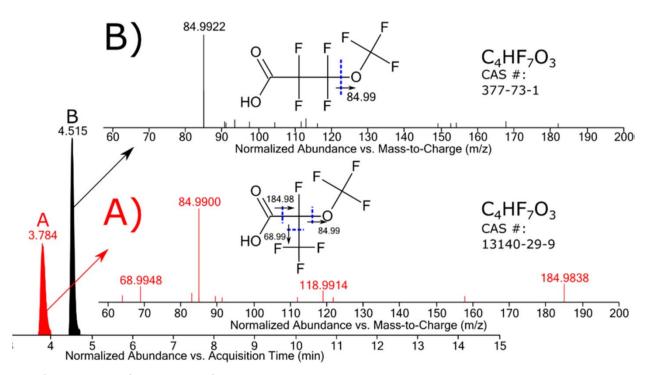



HRMS Analysis to compare Samples:

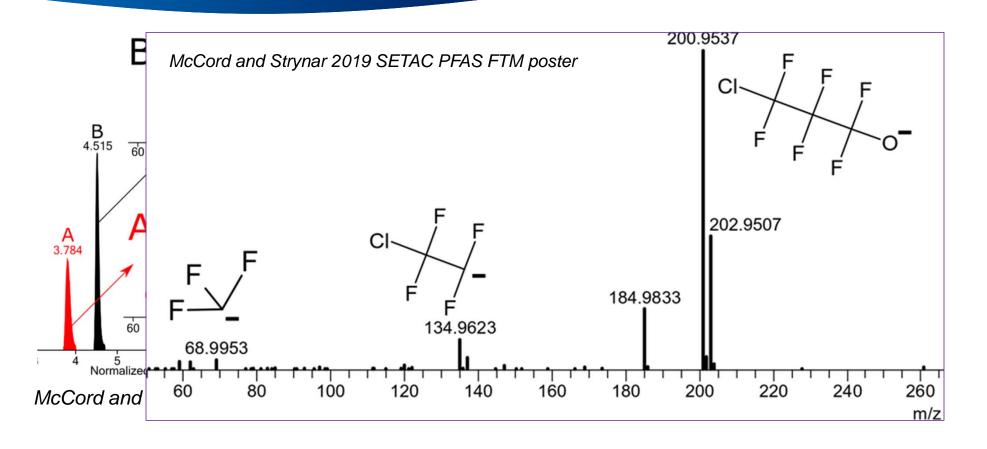
Upstream vs. downstream
Pretreatment vs post-treatment
Close vs distant
Upwind vs downwind
Surface vs deep
Etc....

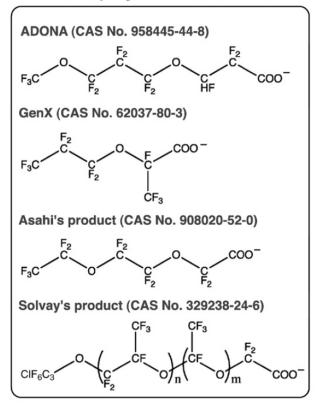




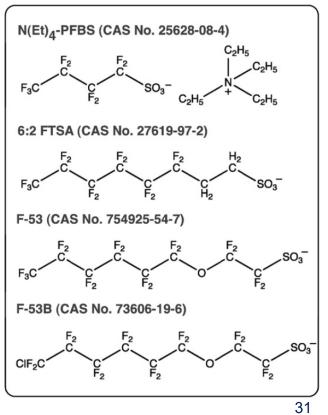


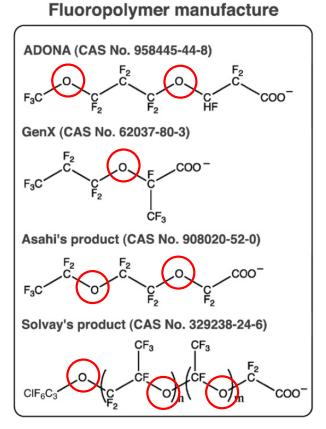
Cape Fear River Sample Comparison

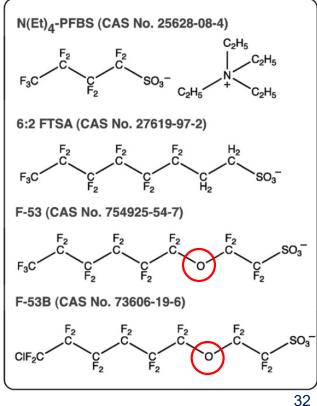

Gas Phase *n*-mers (HFPO-DA)



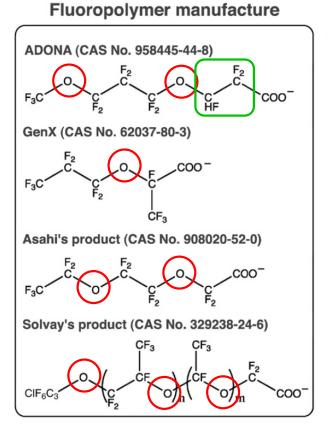
McCord and Strynar ES&T 2019


Diagnostic Fragment Ions contd.

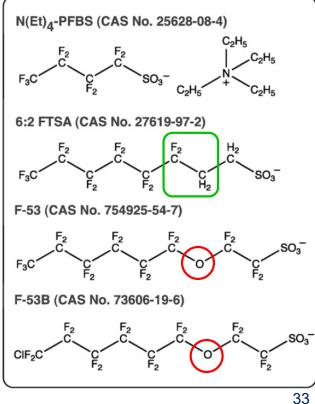

Fluoropolymer manufacture


Metal plating

Ethers/Polyethers

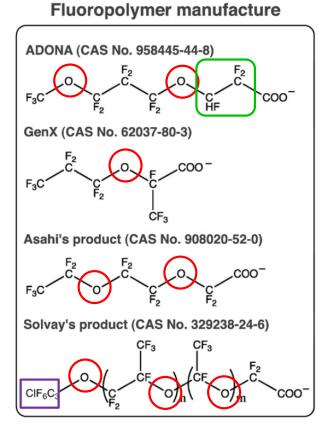


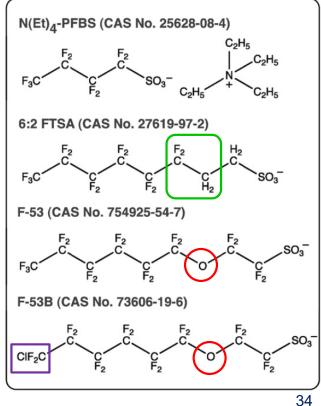
Metal plating



Ethers/Polyethers

Polyfluorinated


Metal plating


Ethers/Polyethers

Polyfluorinated

Chlorinated

Metal plating

November 2015

Article

pubs.acs.org/est

Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS)

Mark Strynar,**[†] Sonia Dagnino,^{†,‡} Rebecca McMahen,^{†,‡} Shuang Liang,^{†,‡} Andrew Lindstrom,[†] Erik Andersen,[†] Larry McMillan,[§] Michael Thurman,^{||} Imma Ferrer,^{||} and Carol Ball[⊥]

Table 1. Accurate Mass of Polyfluorinated Compounds and In-Source Artifacts Found in Extracted Water Samples

number	formula	CAS no.	name	[M] ^a	$[M-H]^ m/z$	$[2M - 2H + Na]^{-} m/z$	$\frac{[2M-H]^-}{m/z}$
Monoe	ether PFECAs						
1	C ₃ HF ₅ O ₃			179.9846	178.9773	380.9438	358.9619
2	C ₄ HF ₇ O ₃			229.9813	228.9740	480.9372	458.9553
3	C5HF9O3	863090-89-5		279.9782	278.9709	580.9310	558.9491
4	C ₆ HF ₁₁ O ₃	13252-13-6	undecafluoro-2-methyl-3-oxahexanoic acid	329.9750	328.9677	680.9247	658.9427
5	$C_7HF_{13}O_3$			379.9718	378.9645	780.9182	758.9363
6	$C_8HF_{15}O_3$			429.9686	428.9613	880.9118	858.9299
Polyet	her PFECAs						
7	C ₇ HF ₁₃ O ₇	39492-91-6	perfluoro-3,5,7,9,11-pentaoxadodecanoic acid	443.9515	442.9442	908.8776	886.8957
8	$C_6HF_{11}O_6$	39492-90-5	perfluoro-3,5,7,9-butaoxadecanoic acid	377.9598	376.9525	776.8942	754.9123
9	C5HF9O5	39492-89-2	perfluoro-3,5,7-propaoxaoctanoic acid	311.9681	310.9608	644.9108	622.9289
10	C ₄ HF ₇ O ₄	39492-88-1	perfluoro-3,5-dioxahexanoic acid	245.9764	244.9691	512.9274	490.9455
PFESA	ls						
11	C7HF13O5S	66796-30-3 ^b		443.9337	442.9264		
12	C7H2F14O5S			463.9399	462.9326		

3 Found in human serum Wilmington, NC (Kotlarz EHP accepted 2020)

Example Structures

Polyethers (4):

November 2015

Article

pubs.acs.org/est

Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS)

Mark Strynar,**,† Sonia Dagnino,†,‡ Rebecca McMahen,†,‡ Shuang Liang,†,‡ Andrew Lindstrom,† Erik Andersen,† Larry McMillan,§ Michael Thurman, Imma Ferrer, and Carol Ball

Table 1. Accurate Mass of Polyfluorinated Compounds and In-Source Artifacts Found in Extracted Water Samples

number	formula	CAS no.	name	$[M]^a$	$[M-H]^ m/z$	$[2M - 2H + Na]^{-} m/z$	$\frac{[2M-H]^{-}}{m/z}$
Monoe	ether PFECAs						
1	C ₃ HF ₅ O ₃			179.9846	178.9773	380.9438	358.9619
2	C ₄ HF ₇ O ₃			229.9813	228.9740	480.9372	458.9553
3	C ₅ HF ₉ O ₃	863090-89-5		279.9782	278.9709	580.9310	558.9491
4	$C_6HF_{11}O_3$	13252-13-6	undecafluoro-2-methyl-3-oxahexanoic acid	329.9750	328.9677	680.9247	658.9427
5	$C_7HF_{13}O_3$			379.9718	378.9645	780.9182	758.9363
6	C ₈ HF ₁₅ O ₃			429.9686	428.9613	880.9118	858.9299
Polyet	her PFECAs						
7	C ₇ HF ₁₃ O ₇	39492-91-6	perfluoro-3,5,7,9,11-pentaoxadodecanoic acid	443.9515	442.9442	908.8776	886.8957
8	$C_6HF_{11}O_6$	39492-90-5	perfluoro-3,5,7,9-butaoxadecanoic acid	377.9598	376.9525	776.8942	754.9123
9	C5HF9O5	39492-89-2	perfluoro-3,5,7-propaoxaoctanoic acid	311.9681	310.9608	644.9108	622.9289
10	C4HF7O4	39492-88-1	perfluoro-3,5-dioxahexanoic acid	245.9764	244.9691	512.9274	490.9455
PFESA	As						
11	C7HF13O5S	66796-30-3 ^b		443.9337	442.9264		
12	$C_7H_2F_{14}O_5S$			463.9399	462.9326		

3 Found in human serum Wilmington, NC (Kotlarz EHP accepted 2020)

Example Structures

Monoether (6): GenX

Polyethers (4):

Polyethers sulfonates (2)

November 2015

Article

pubs.acs.org/est

Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS)

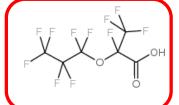

Mark Strynar,**,† Sonia Dagnino,†,‡ Rebecca McMahen,†,‡ Shuang Liang,†,‡ Andrew Lindstrom,† Erik Andersen,† Larry McMillan,§ Michael Thurman, Imma Ferrer, and Carol Ball

Table 1. Accurate Mass of Polyfluorinated Compounds and In-Source Artifacts Found in Extracted Water Samples

number	formula	CAS no.	name	$[M]^a$	$[M-H]^ m/z$	$[2M - 2H + Na]^{-} m/z$	$\frac{[2M-H]^{-}}{m/z}$
Mono	ether PFECAs						
1	C ₃ HF ₅ O ₃			179.9846	178.9773	380.9438	358.9619
2	C ₄ HF ₇ O ₃			229.9813	228.9740	480.9372	458.9553
3	C ₅ HF ₉ O ₃	863090-89-5		279.9782	278.9709	580.9310	558.9491
4	$C_6HF_{11}O_3$	13252-13-6	undecafluoro-2-methyl-3-oxahexanoic acid	329.9750	328.9677	680.9247	658.9427
5	$C_7HF_{13}O_3$			379.9718	378.9645	780.9182	758.9363
6	C ₈ HF ₁₅ O ₃			429.9686	428.9613	880.9118	858.9299
Polvet	her PFECAs						
7	C ₇ HF ₁₃ O ₇	39492-91-6	perfluoro-3,5,7,9,11-pentaoxadodecanoic acid	443.9515	442.9442	908.8776	886.8957
8	$C_6HF_{11}O_6$	39492-90-5	perfluoro-3,5,7,9-butaoxadecanoic acid	377.9598	376.9525	776.8942	754.9123
9	C ₅ HF ₉ O ₅	39492-89-2	perfluoro-3,5,7-propaoxaoctanoic acid	311.9681	310.9608	644.9108	622.9289
10	C ₄ HF ₇ O ₄	39492-88-1	perfluoro-3,5-dioxahexanoic acid	245.9764	244.9691	512.9274	490.9455
PFESA	As						
11	C-HF12OcS	66796-30-3 ^b		443.9337	442.9264		
12	C ₇ H ₂ F ₁₄ O ₅ S			463.9399	462.9326		

3 Found in human serum Wilmington, NC (Kotlarz EHP accepted 2020)

Example Structures

Monoether (6): GenX

Polyethers (4):

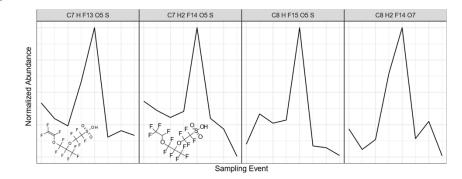
sulfonates (2)

Trends

Clustering

Fingerprinting

Previously Undiscovered

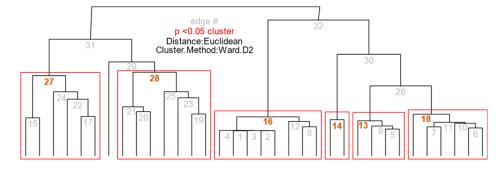


Trends

Clustering

Fingerprinting

Previously Undiscovered

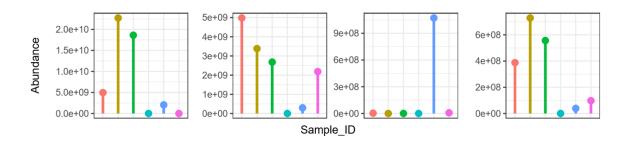


Trends

Clustering

Fingerprinting

Previously Undiscovered



Trends

Clustering

Fingerprinting

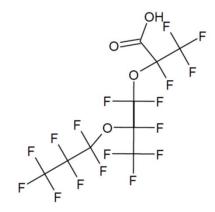
Previously Undiscovered

N=20 NC monitoring Wells (M-H)

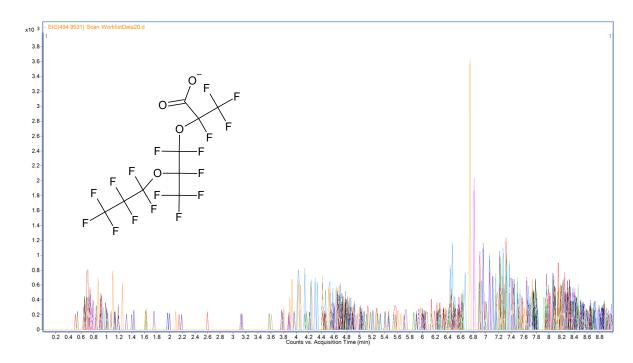
HFPO-TA CAS 13252-14-7

DTXSID00892442

 $\begin{array}{lll} \mbox{Molecular Formula:} & \mbox{C}_9\mbox{HF}_{17}\mbox{O}_4 \\ \mbox{Monoisotopic Mass:} & 495.960338\mbox{ Da} \\ \mbox{[M-H]-:} & 494.953061\mbox{ Da} \end{array}$


Pan et al., 2017 ES&T

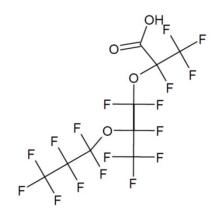
DOI: 10.1021/acs.est.7b02259


Xiaoqing River China near fluoropolymer production facility Found in water, carp and nearby human serum

N=20 NC monitoring Wells (M-H)

HFPO-TA CAS 13252-14-7 DTXSID00892442

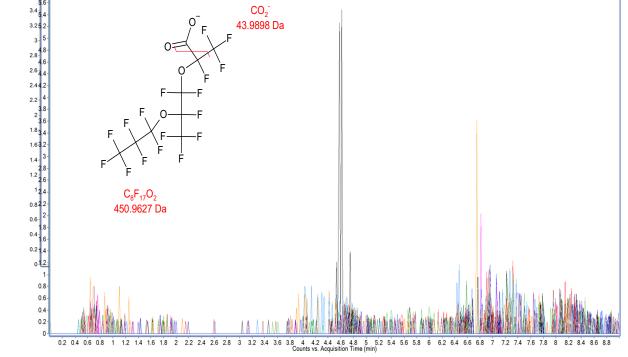
 $\begin{array}{lll} \mbox{Molecular Formula:} & \mbox{C}_9\mbox{HF}_{17}\mbox{O}_4 \\ \mbox{Monoisotopic Mass:} & 495.960338\mbox{ Da} \\ \mbox{[M-H]-:} & 494.953061\mbox{ Da} \end{array}$


Pan et al., 2017 ES&T

DOI: 10.1021/acs.est.7b02259

Xiaoqing River China near fluoropolymer production facility Found in water, carp and nearby human serum

N=20 NC monitoring Wells (M-H)


HFPO-TA CAS 13252-14-7 DTXSID00892442

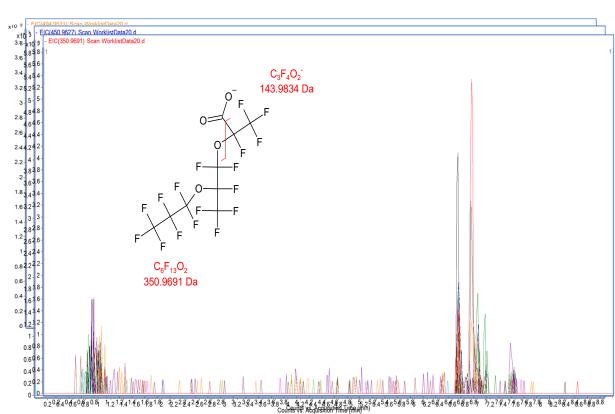
 $\begin{array}{lll} \mbox{Molecular Formula:} & \mbox{C}_9\mbox{HF}_{17}\mbox{O}_4 \\ \mbox{Monoisotopic Mass:} & 495.960338\mbox{ Da} \\ \mbox{[M-H]-:} & 494.953061\mbox{ Da} \end{array}$

Pan et al., 2017 ES&T

DOI: 10.1021/acs.est.7b02259

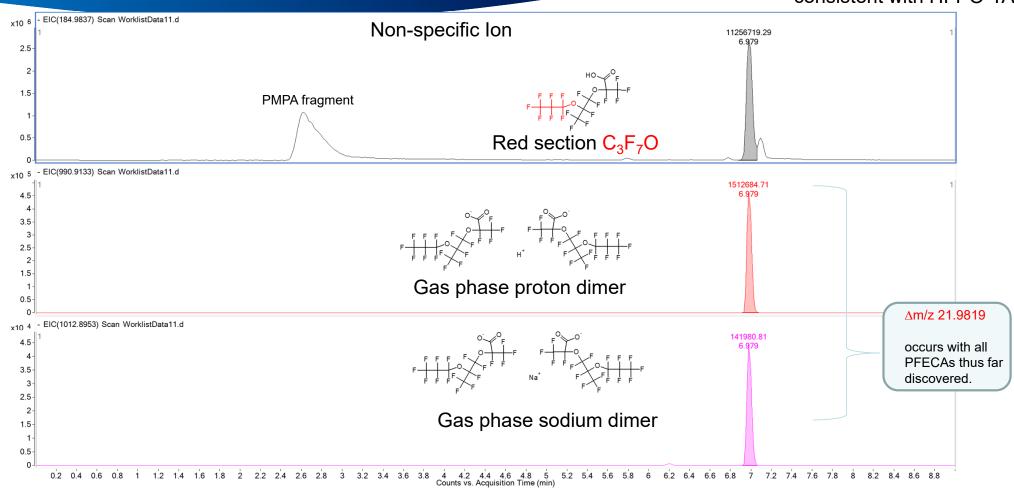
Xiaoqing River China near fluoropolymer production facility Found in water, carp and nearby human serum

N=20 NC monitoring Wells (M-H)

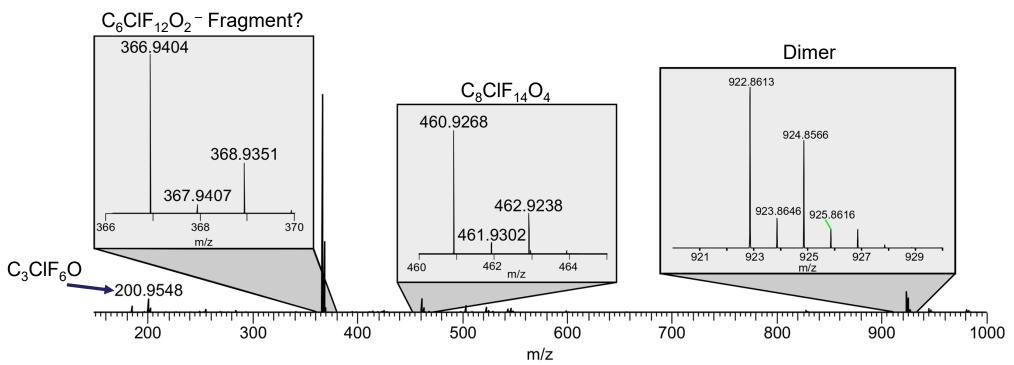

HFPO-TA CAS 13252-14-7 DTXSID00892442

 $\begin{array}{lll} \mbox{Molecular Formula:} & \mbox{C}_9\mbox{HF}_{17}\mbox{O}_4 \\ \mbox{Monoisotopic Mass:} & 495.960338\mbox{ Da} \\ \mbox{[M-H]-:} & 494.953061\mbox{ Da} \end{array}$

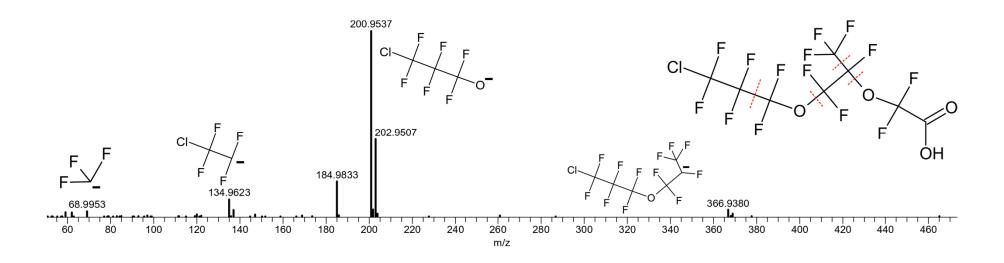
Pan et al., 2017 ES&T


DOI: 10.1021/acs.est.7b02259

Xiaoqing River China near fluoropolymer production facility Found in water, carp and nearby human serum

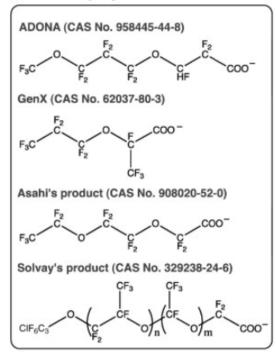


Three TOFMS ions consistent with HFPO-TA



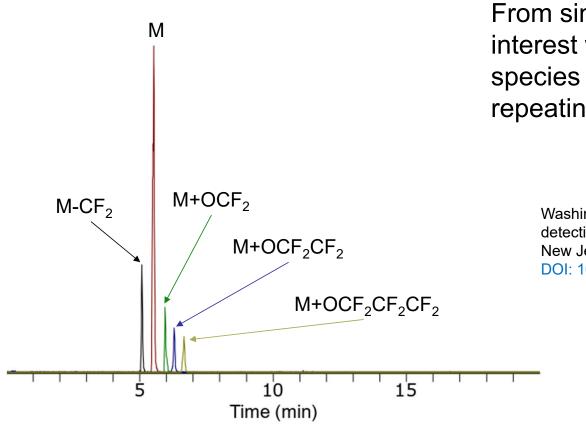
Novel Compound Identification

460.9268*2+1.00784 = 922.8614


Structural Elucidation by MS/MS

- Unequivocal assignment of terminal CI and ether positions based on MS/MS experiments
- Confirmation of Dimers and in-source fragments from prior slide, with additional experiments (not show)

Literature Support


Fluoropolymer manufacture

Chloro perfluoro polyether carboxylic acids CIPFPECAs(n,m)

Wang, Z., et al. (2013). <u>Environ. Int. **60: 242.**</u> EFSA J, 8 (2) (2010), p. 1519, <u>10.2903/j.efsa.2010.1519</u>

Homologous Fluoropolymer Series

From single identified mass of interest we identified additional species related by CF₂ repeating units

Washington et al., 2020 Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils *Science*

DOI: 10.1126/science.aba7127

Structural Homologs

CAS 329238-24-6

CIPFECA 1,1

CIPFECA 1,0

CIPFECA 0,1

CIPFECA 2,0

CIPFECA 0,2

51

Some Take Home Points

- You only see what you are looking for
- HRMS has a role to discover the undiscovered
- HRMS should be used in concert with LRMS or other methods
- Retrospective analysis is possible

Questions?

Contact Information strynar.mark@epa.gov

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency